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Internal hydraulic theory is often used to describe idealized bi-directional exchange
flow through a constricted channel. This approach is formally applicable to layered
flows in which velocity and density are represented by discontinuous functions that
are constant within discrete layers. The theory relies on the determination of flow
conditions at points of hydraulic control, where long interfacial waves have zero phase
speed. In this paper, we consider hydraulic control in continuously stratified exchange
flows. Such flows occur, for example, in channels connecting stratified reservoirs and
between homogeneous basins when interfacial mixing is significant. Our focus here is
on the propagation characteristics of the gravest vertical-mode internal waves within
a laterally contracting channel.

Two approaches are used to determine the behaviour of waves propagating through
a steady, continuously sheared and stratified exchange flow. In the first, waves are
mechanically excited at discrete locations within a numerically simulated bi-directional
exchange flow and allowed to evolve under linear dynamics. These waves are then
tracked in space and time to determine propagation speeds. A second approach, based
on the stability theory of parallel shear flows and examination of solutions to a sixth-
order eigenvalue problem, is used to interpret the direct excitation experiments. Two
types of gravest mode eigensolutions are identified: vorticity modes, with eigenfunction
maxima centred above and below the region of maximum density gradient, and density
modes with maxima centred on the strongly stratified layer. Density modes have phase
speeds that change sign within the channel and are analogous to the interfacial waves
in hydraulic theory. Vorticity modes have finite propagation speed throughout the
channel but undergo a transition in form: upwind of the transition point the vorticity
mode is trapped in one layer. It is argued that modes trapped in one layer are not
capable of communicating interfacial information, and therefore that the transition
points are analogous to control points. The location of transition points are identified
and used to generalize the notion of hydraulic control in continuously stratified
flows.

1. Introduction
Internal hydraulic theory (see, for example, Wood 1968, 1970; Armi 1986) can

be used to describe density-driven flows in which fluid motion is determined by a
buoyancy and inertia force balance. In particular, inviscid flow through constricted
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channels is the major application of hydraulic theory. If mixing and friction are
negligible, the hydraulic solution can be used to calculate fluid velocity in distinct
layers which interact in only a limited way. The velocities scale with the speed of
interfacial waves and depend upon the depth of the interface.

The key to understanding hydraulic flows lies in the existence of control points. At
a control point, the flow is constrained in that velocities are such that the phase speed
of one of two interfacial waves is zero. The existence of control points has two major
ramifications. First, given knowledge of the flow at the control points, it is possible to
calculate global information about the flow field within a simple domain, provided the
fundamental assumptions are correct. Secondly, since velocities are limited by internal
wave speeds at the control points, hydraulic theory places an upper bound on the
total flux through the channel, the quantity of paramount importance to estimating
transport in geophysical systems.

It is often difficult to determine whether an exchange flow between two basins
is hydraulically controlled. One reason for this is that hydraulic control is formally
defined for layered flow, that is, horizontal flow with uniform velocity and density
within discrete layers and discontinuities in these quantities between layers. In contrast,
observed flows are continuously sheared and stratified. Though large gradients in
velocity and density are often present, these finite-thickness interfaces may be displaced
vertically from one another, making an approximate decomposition into layers difficult
and subjective. Unfortunately, using the results of hydraulic theory to determine
whether such flows are controlled depends sensitively on how one defines the layers
(see, for example, Gregg & Özsoy 2001; Pratt et al. 1999). Furthermore, flux estimates
based on layered hydraulic solutions are often significant overestimates of the true
flux in continuously stratified flows (Winters & Seim 2000; Hogg, Ivey & Winters
2001).

Our objective here is to extend the notion of hydraulic control to continuously
stratified flows in such a way that determining whether a flow is controlled and
locating the position of control points can be done in an objective manner. To
simplify the presentation we consider in detail the limited class of flows resulting
from a classical lock-exchange problem for a fluid with non-negligible viscosity and
diffusivity. In particular, we consider exchange flow through a laterally contracting
channel separating two infinite basins filled initially with homogeneous fluid of
different densities. For channels with slowly varying width, the solution in the inviscid,
non-diffusive limit can be obtained using two-layer hydraulic theory as described in
Armi (1986) and Lawrence (1990). When mixing and dissipation are significant, a
finite-thickness interfacial layer is produced with the zero-isotach displaced from the
position of the maximum density gradient.

Before considering the continuously stratified case, we briefly review the concept
of hydraulic control in the idealized two-layer theory. Consider a flat-bottomed
channel of length L and depth H , with a simple minimum width W as shown in
figure 1(a), where spatial variables have already been non-dimensionalized by the size
of the domain. At the left-hand end of the channel is an infinite reservoir of density
ρ1, and at the right-hand end of the channel is a similar reservoir with a higher
density ρ2. Assuming that viscosity and mixing are negligible, and that the width
of the channel varies slowly with horizontal distance, fluid velocities in two discrete
layers will be constant within the layer, and approximately horizontal. Under these
assumptions, a simple model based on conservation of mass within each of the two
layers in combination with conservation of energy (Bernoulli’s equation) captures the
nonlinear dynamics of exchange flow in the system (see, for example Wood 1970;
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Figure 1. Characteristics of the hydraulic solution with qr = 2. (a) Channel in plan view; (b) layer
height and velocity vectors in elevation view; (c) variation of the composite Froude number G2;
(d) plot of wave speeds.

Armi 1986; Armi & Farmer 1986, Lawrence 1990; Baines 1995). The resulting flow
is shown in figure 1(b).

Points of control occur when the composite Froude number,

G2 ≡ u2
1

h1

+
u2

2

h2

− (1− r)u2
1u

2
2

h1h2

= 1, (1.1)

where hi is the dimensionless depth of each layer (non-dimensionalized by H), and ui
the dimensionless velocity (normalized by the inviscid wave speed (g′H)1/2). The ratio
of layer densities is r ≡ ρ1/ρ2, and g′ = g(1− r) is the reduced gravity. As shown by
the variation of G2 with x in figure 1(c), in the case where the channel has a simple
width minimum and a controlled flow has a net barotropic component (defined by
the ratio of layer fluxes qr = q1/q2), there are two points of control. A topographic
control is located at the width minimum (x = 0 in figure 1) and a virtual control is
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located upstream of the width minimum with respect to the barotropic flow direction
(x ≈ −0.13). Between these two points, the flow is said to be subcritical while the
flow between the reservoirs and the control points is said to be supercritical. We are
ignoring here the possibility of hydraulic jumps as they do not formally appear in
the theory.

It can be shown (Dalziel 1991; Baines 1995) that for a two-layer flow the hydraulic
control condition can be written

G2 = 1 +
c1c2

h1h2

= 1, (1.2)

where c1 and c2 are the phase speeds of the two interfacial waves non-dimensionalized
by (g′H)1/2. In a quiescent fluid, we expect two interfacial waves to exist: one travelling
to the right, and one to the left. When the layers flow in opposite directions, (1.2)
implies that at least one wave is arrested at a point of hydraulic control. This is
demonstrated in figure 1(d), where normalized waves speeds are plotted as a function
of x. In subcritical flow, G2 < 1 and the two waves travel in opposite directions. In
supercritical flow, G2 > 1 and both waves propagate in the same direction, away from
the contraction and toward one of the reservoirs. A central region of subcritical flow
is said to be insulated from interface disturbances in either basin in the sense that
such changes cannot be communicated to the subcritical region via long interfacial
internal waves. In this way, changes can occur in the reservoirs which do not alter
the flux through the channel.

The two long-wave speeds coalesce downstream of the contraction (relative to
the fastest flowing layer). Mathematically, this means that the wave speeds are
complex, implying that the modes are unstable there. This aspect of the hydraulic
solution is described by Lawrence (1990) who introduces a stability Froude number.
The implication is that hydraulic theory is not self-consistent: instabilities will be
generated in part of the domain leading to mixing of density and momentum between
the two layers which violates the fundamental assumptions. Nonetheless, numerical
simulations have demonstrated that weak damping suppresses long-wave instabilities
(Winters & Seim 2000), and that the hydraulic solution is a good approximation to
modelled flows in the limit of weak damping (Hogg et al. 2001).

Hydraulic control of a multi-layered exchange flow is investigated by Engqvist
(1996). By defining two groups of layers, each group flowing in the opposite direction,
with a stagnant layer in between, it is possible to calculate the position of a topo-
graphic control and a number of virtual controls. An extra virtual control is formed
for each extra layer and the virtual controls refer to points at which the higher vertical
modes become critical. In this case the flow is still controlled by the lowest mode. The
multi-layered technique is useful for conditions where end reservoirs are stratified,
but the condition that groups of layers are decoupled prevents the application of this
technique to flows where mixing is significant.

In this paper we consider the propagation of internal waves in a flow similar
to the two-layer solution discussed above but where mixing and dissipation have
acted to smooth the discontinuities between layers producing a continuously sheared
and stratified exchange flow. A steady-state exchange flow is generated through
direct simulation of a lock-exchange problem with finite mixing and dissipation.
The simulation is run to a quasi-steady state, at which point it is averaged with
respect to the cross-channel coordinate to produce a background flow field ū(x, z),
w̄(x, z) and ρ̄(x, z). Two complementary techniques are then used to quantify the
propagation characteristics of linear internal waves through this background flow.
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Figure 2. Graph of channel shape and curvilinear coordinates in plan view.

First, we modify the computational model to directly simulate the evolution of
spatially localized disturbances and determine the speed and direction of the excited
waves as a function of position within the channel. We then consider the eigenvalue
problem for parallel shear flow at different locations within the channel, allowing
for the effects of viscosity and diffusivity. We limit our discussion to the gravest
vertical modes, noting that additional modes appear in the continuously sheared and
stratified case. We do not consider issues related to higher vertical modes. The results
of these two sets of experiments are then used to examine the hydraulic control of
the underlying flow.

2. Numerical experiments
2.1. Numerical simulation of exchange flows

The numerical experiments in this study are based on a three-dimensional model
called S-FIT (Winters, Seim & Finnigan 2000) which solves the fluid equations of
motion in a curvilinear coordinate system. The coordinates are orthogonal, however
the boundary can be distorted in one dimension as shown in figure 2 to simulate
flow down a channel of varying width. The domain shown in figure 2 is used for all
numerical experiments described here.

S-FIT solves the following equations:

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p− ẑgρ

ρ0

+ ∇ ·K∇u, (2.1)

∂ρ

∂t
+ u · ∇ρ = ∇ ·K∇ρ, (2.2)

∇ · u = 0, (2.3)

where u = (u, v, w) is the velocity vector, ρ is the density and p the pressure. In
addition, we define reference density ρ0, a turbulent eddy viscosity K , and assume a
turbulent Prandtl number of one, so that K also represents turbulent eddy diffusivity.
Note that K is dimensionless (normalized by (g′H3)1/2). Usually, turbulent parameters
such as eddy viscosity and eddy diffusivity are calculated explicitly by a closure scheme
(see Winters & Seim 2000). We represent the effect of such mixing only crudely here
and prescribe a constant eddy viscosity/diffusivity throughout the contraction region,
as discussed in Hogg et al. (2001). The purpose here is to generate a continuously
sheared and stratified flow similar to that expected if strong mixing were to occur.

The flows simulated are identical to the flow detailed by Hogg et al. (2001). The
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Figure 3. Numerical simulation of exchange flow showing isopycnals and velocity vectors in
elevation view.

surface is a fixed lid, with free-slip conditions on upper, lower and sidewall boundaries.
The streamwise end conditions are that inflowing density is specified (representing
infinite homogeneous reservoirs), and a surface pressure difference across the length
of the channel is imposed. The channel is 120 × 10 × 10 m, and has 129 × 17 × 65
gridpoints. The resulting base flow, for K ≈ 10−3 and qr ≈ 1 can be seen in figure 3
with velocity vectors and selected isopycnals shown.

2.2. Direct excitation experiments

We use a slightly adapted version of S-FIT to look at the evolution of linear
perturbations in a steady-state flow. Starting with (2.1)–(2.3), assume that the steady-
state solution satisfies these equations in our curvilinear domain. Each variable is then
separated into two parts: a perturbation quantity (prime) and a background steady
state (overbar), by writing

u(x, y, z, t) = ū(x, z) + u′(x, y, z, t), (2.4)

ρ(x, y, z, t) = ρ̄(x, z) + ρ′(x, y, z, t), (2.5)

p(x, y, z, t) = p̄(x, z) + p′(x, y, z, t). (2.6)

This is substituted into (2.1)–(2.3), to give

∂u′

∂t
+ u′ · ∇u′ + u′ · ∇ū+ ū · ∇u′ = − 1

ρ0

∇p′ − ẑgρ′

ρ0

+ ∇ ·K∇u′, (2.7)

∂ρ′

∂t
+ u′ · ∇ρ̄+ ū · ∇ρ′ + u′ · ∇ρ′ = ∇ ·K∇ρ′, (2.8)

∇ · u′ = 0, (2.9)

where we have removed background variables which independently satisfy (2.1)–(2.3).
Since we are interested in the linear evolution of these perturbations, we remove the
possibility of nonlinear interactions by eliminating double perturbation quantities,
giving

∂u′

∂t
+ u′ · ∇ū+ ū · ∇u′ = − 1

ρ0

∇p′ − ẑgρ′

ρ0

+ ∇ ·K∇u′, (2.10)
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∂ρ′

∂t
+ u′ · ∇ρ̄+ ū · ∇ρ′ = ∇ ·K∇ρ′, (2.11)

∇ · u′ = 0. (2.12)

It is now apparent that (2.10)–(2.12) are almost identical to (2.1)–(2.3), with the
exception of the cross-terms between the background state and the perturbation
variables. Therefore, the existing code which solves (2.1)–(2.3) can be easily adapted
to solve for the perturbation quantities in (2.10)–(2.12) using the background (steady)
state as a set of input variables. The response to small perturbations introduced
into the flow is then calculated using the adapted numerical model. The initial
perturbations are typically confined in area, but slowly evolving in time, so as to
simulate long waves in the domain.

2.3. Calculation of eigenmodes

Simulations of the evolution of perturbations provide some information on the
structure of hydraulic control in stratified flows. However, perturbations will inevitably
project onto a number of superposed travelling modes, and thus it is not possible to
extract information about individual modes. Here we outline an analytical technique
to separate the modes available in a turbulent stratified shear flow.

The propagation of waves in inviscid continuously stratified fluids is described by
the Taylor–Goldstein equation (see, for example, Banks, Drazin & Zaturska 1976)

(ū− c)(∂2 − k2)ψ̂ − ūzzψ̂ +
N2

(ū− c) ψ̂ = 0, (2.13)

where ∂ and z subscripts are used to represent the derivative with respect to z.
N2 = −g/ρ0(∂ρ̄/∂z) is the buoyancy frequency which is non-dimensionalized by a
time scale using the channel height and hydraulic velocity scale. The perturbation
streamfunction ψ is based on the perturbation velocities, so that

u′ =
∂ψ

z
, (2.14)

w′ = −∂ψ
x
, (2.15)

and waves are assumed to be of the form,

ψ(x, z, t) = Re[ψ̂(z)eik(x−ct)]. (2.16)

Therefore k is the horizontal wavenumber and c the horizontal phase speed. The
Taylor–Goldstein equation describes the behaviour of waves in fluids with shear and
stratification and the eigenvalue formulation produces the vertical modal structure
(ψ̂(z)) as well as the phase speed of waves (c).

The simplest approach to estimating the hydraulic state of a stratified sheared
exchange flow would be to extract the vertical profiles of ū(z) and ρ̄(z) from the
background flow. The phase speed of the two lowest modes might then be determined
by solving the Taylor–Goldstein equation many times for different profiles at different
points in the channel. We would then interpret the flow to be critical at points where
one of the two lowest modes has zero phase speed. The difficulty with this approach
is that the Taylor–Goldstein equation becomes singular at levels where ū− c = 0 (see
Pratt et al. 2000 for a more complete description of this problem). Such levels are
called critical layers (see, for example, Drazin & Reid 1981), not to be confused with
critical points in the context of two-layer hydraulic theory. Near critical layers, the
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viscosity and diffusivity, which are neglected by the Taylor–Goldstein equation, play
a greater role (Drazin & Reid 1981). In the exchange flow considered here, viscosity
and diffusivity play a significant role in determining the flow. This requires the use
of a more generalized wave equation originally derived by Koppel (1964). This is
the sixth-order viscous stability equation, which can be derived in the same way as
the Taylor–Goldstein equation, using (2.1)–(2.3). The stability equation is written as
follows:

−c2[∂2 − k2]ψ̂ + c[2iKc(∂
2 − k2)2 + 2ū(∂2 − k2)− ūzz]ψ̂ + [K2

c (∂2 − k2)3

− 2iūKc(∂
2 − k2)2 − 2iūzKc∂(∂2 − k2)− ū2(∂2 − k2)

+ 2iūzzzKc∂ + ūūzz + iūzzzzKc −N2]ψ̂ = 0, (2.17)

where Kc is defined as

Kc =
K

k
, (2.18)

and is non-dimensionalized by the factor (g′H5)1/2. Kc can be considered to be a ratio
of the time taken for a wave to travel one wavelength, 1/(k(g′H)1/2), to the time for
momentum to diffuse a distance H vertically. As for the underlying simulations, we
have assumed a turbulent Prandtl number of unity in all of these calculations. The
sixth-order stability equation reduces to the Taylor–Goldstein equation if one removes
the effect of viscosity and diffusion by setting Kc = 0. We can make an immediate
simplification to (2.17) by assuming that we are interested in long waves (small
wavenumber), so that k2ψ̂ will be small compared to ∂2ψ̂. Therefore we eliminate
those terms, simplifying (2.17) to

−c2[∂2]ψ̂ + c[2iKc∂
4 + 2ū∂2 − ūzz]ψ̂ + [K2

c ∂
6 − 2iūKc∂

4

− 2iūzKc∂
3 − ū2∂2 + 2iūzzzKc∂ + ūūzz + iūzzzzKc −N2]ψ̂ = 0. (2.19)

This problem is reduced to a matrix eigenvalue equation, following the procedure
of Winters & Riley (1992) and solved numerically. Start by writing (2.19) as

[A0 + cA1 − c2A2]ψ̂ = 0, (2.20)

where

A0 = [K2
c ∂

6− 2iūKc∂
4− 2iūzKc∂

3− ū2∂2 + 2iūzzzKc∂+ ūūzz + iūzzzzKc−N2], (2.21)

A1 = [2iKc∂
4 + 2ū∂2 − ūzz], (2.22)

A2 = [∂2]. (2.23)

Linearization of (2.20) (following Winters & Riley 1992) gives[ A1 A0

A2 0

] [
cψ̂
ψ̂

]
− c

[ A2 0
0 A2

] [
cψ̂
ψ̂

]
= 0. (2.24)

This equation can be solved numerically using the complex analogue of the QZ
algorithm (Golub & van Loan 1983; Moler & Stewart 1973).

The equation is solved using the same boundary conditions as the model, with
free-slip rigid surfaces at top and bottom. This translates to

ψ̂ = 0, z = 0, H, (2.25)

and

ψ̂zz = 0, z = 0, H. (2.26)
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In addition, there is an adiabatic condition on density which imposes the restriction

2ψ̂zūzzz = 2(ū− c)ψ̂zzzz + iKcψ̂zzzzzz, z = 0, H. (2.27)

Numerical solutions to (2.24) require vertical profiles of ū and N2, and a constant
value for Kc. The vertical profiles are taken from the background steady state,
with the implicit assumption being that wavelengths are small enough so that the
background steady state does not change significantly over one wavelength. A value
of Kc requires an estimate of both eddy viscosity and wavenumber. The eddy viscosity
is already set in the numerical simulation, however the selection of wavenumber is
not so straightforward. The derivation of (2.19) from (2.17) is dependent on long
wavelengths, however there will be upper limits on the length of the wave for two
reasons. First, if we choose infinitely long waves (k → 0), the parameter Kc will become
very large indicating that momentum and density will diffuse so as to significantly
alter the waveform over one wavelength. Secondly, the background flow we are
investigating is changing with horizontal distance, and therefore we need to select a
wavelength over which the flow does not change dramatically. The wavenumber is
chosen so that wavelengths are 1/8th of the channel length, resulting in a value of
Kc = 0.003. We have run additional cases examining the sensitivity to the viscosity
parameter and found that the results are not altered by variations in Kc of an order
of magnitude.

The solution to (2.24) will then give information about the modes which can exist,
and the phase speed (the real part of c) and rates of growth or decay (the imaginary
part of c) of those modes. The eigenvectors have a real and imaginary part, and
therefore we take the absolute value ((ψ̂ψ̂∗)1/2) to obtain a simple eigenvector whose
structure can be used to identify the lowest modes. The structure and phase speed of
vertical mode-1 waves as a function of position in the channel is of primary concern,
and will be used to characterize the behaviour of waves in the flow.

3. Results
3.1. Direct excitation experiments

Perturbations to the steady exchange shown in figure 3 are applied to a small area
(0.07L×0.08H) on the region of maximum density gradient. The density is perturbed
within this region over a dimensionless time of 0.8. This disturbance is designed to
stimulate a long mode-1 wave travelling on the density interface, however it is found
that results are not particularly sensitive to the length of time, or area over which the
perturbation is applied, provided that it is centred on the maximum density gradient.

Figure 4 demonstrates the evolution of a perturbation generated at x = −0.06,
just to the left of the contraction. The evolution is described by the density variation
of the perturbation field on the mid-density isopycnal of the background flow. At
any one time this produces the perturbation amplitude as a function of x. Therefore,
we combine a number of perturbation amplitude snapshots taken at different times
to construct an x, t plot as shown in figure 4. In this plot, one can clearly see the
evolution of three different wave extrema. The initial placement of the perturbation
produces a positive peak which travels to the left. When the perturbation ends (at
dimensionless time 0.8), a trough and a peak remain. The trough propagates to the
left at a similar speed to the first peak, while the large peak slowly dissipates, and
breaks up into several wave packets travelling to the left and right.

The hydraulic solution for flow with the same reservoir conditions and barotropic
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Figure 4. Evolution of a linear perturbation in time. Contours show the elevation of the interface
from the equilibrium condition in dimensionless units. The perturbation inserted at x = −0.06
for time t = 0.8 spawns a number of disturbances which mostly travel leftwards (away from
the contraction), however some of the disturbance is communicated to the right-hand side of the
domain.

flow rate predicts that a wave generated to the left of the contraction cannot propagate
information to the right-hand end of the domain. As figure 4 shows, when diffusion
is introduced, information propagates to the left, but some adjustment occurs at the
right-hand end of the channel, implying that energy is able to leak through. This
simulation can be used to infer the speed of propagation of waves as a function
of position. The technique used here is simply to identify the position of a peak as
a function of time, and find the derivative to give the wave velocity at each point.
By exciting a number of perturbations at different positions, the speed of waves at
different positions can be calculated. The procedure here is to track wave troughs and
peaks as they propagate through the domain, and determine their velocity at each
gridpoint. Each dot in figure 5 represents a measured wave velocity at the position
shown. Note that there is significant scatter in this data, as the initial perturbation
may break into a number of different modes. These modes are compared to the
hydraulic prediction of wave speeds, shown as the solid curves. The vertical line is
the position of the topographic and virtual controls in the hydraulic solution, which
are coincident.

Figure 5 demonstrates that the two-layer hydraulic solution generally overestimates
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Figure 5. Measurements of speed of propagation of disturbances against position for qr ≈ 1.0. Each
dot represents the speed of one wave, although it is not possible to distinguish the different modes
which are created. The two-layer hydraulic prediction of wave speeds is shown as solid curves, with
the position of the virtual and topographic control (coincident in this case) shown as a vertical solid
line.

the phase speeds which are observed. However, from the point of view of critical
flow, it is the direction of wave propagation rather than the phase speed which is
of interest. Notably there are no right-going waves (c > 0) for x . −0.08, and no
left-going modes (c < 0) for x & 0. This implies supercritical flow in the sense that
information about interfacial disturbances is not communicated from one end of the
channel to the other.

For cases when the barotropic flow rate is finite, two-layer hydraulics predicts
that there is some finite subcritical region in the centre of the contraction due
to the displacement of the virtual control point. The hydraulic phase speed for
a case with qr = 4.2 is shown in figure 6, along with linear perturbation phase
speed data using a background flow with the same mixing as in figure 3, but with
qr ≈ 4.2. Again there are regions of supercritical flow for x & −0.06 and x . −0.28,
implying that there must be some restriction on the propagation of internal waves
in these regions. While the position of these control points differs between the
hydraulic and the linear perturbation analysis, the end result is that both of these
techniques predict that mode-1 interfacial waves are unable to propagate through the
channel domain between reservoirs, so that the two reservoirs are isolated from each
other.

The propagation of linear disturbances on a background exchange flow demon-
strates that while there are differences, the concept of hydraulic control may have
relevance to stratified flows where mixing occurs. Qualitative features of hydraulic
control appear to be preserved: a subcritical region in the centre of the domain
and two supercritical regions on either side. The control points do not occur at the
position predicted in the hydraulic solution.
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Figure 6. Measurements of speed of propagation of disturbances against position for qr ≈ 4.2 using
the same methodology as figure 5. Virtual and topographic control points predicted by hydraulic
theory are shown by vertical lines.

3.2. Calculation of eigenmodes

Solutions of (2.24) are sought, with input conditions being vertical profiles of velocity
and density from the background states used in the above direct simulation of waves.
The numerical solution of this equation produces a large number of modes, and
requires significant interpretation to be able to use these results. We assume that the
lowest modes (those with a simple eigenvector structure) will be the most important
from the point of view of communicating information. In addition, we eliminate
modes which are ‘trapped’ in one layer, so that we predominantly investigate vertical
mode-1 waves which are centred on the interfacial region dividing the two-layers.
While the instantaneous gradient Richardson number is less than 1/4 at the interface,
the modes we show are stabilized by the effect of viscosity, and thus in all cases the
waves are decaying. However the growth or decay is not related to formal definitions
of hydraulic control, and therefore we do not specify the imaginary part of the wave
speeds.

Figure 7 shows density (a) and velocity profiles (b) at x = 0, with eigenvectors of
the lowest mode waves (defined to be those modes with only one turning point). The
modes shown here are typical of the modes observed at any point in the channel.
In panels (c), (e) and (f) we see modes which are trapped in either one of the
two-layers, and are propagating in the same direction as the layer velocity. These
modes are not of interest to the concept of hydraulic control, as the information
which they communicate is by and large related to the portion of the domain which
is homogeneous in density and thus irrelevant to the baroclinic flow. Modes shown
in (d), (g) and (h) are of greater interest as they are centred on the interfacial region,
and thus have the potential to carry information about any possible variation in the
main baroclinic state of either reservoir.

The effect of strong shear on the low modes can be seen in figure 7(g, h). Without
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Figure 7. Modal structure of selected eigenvectors at x = 0 for qr ≈ 1.0 as determined by the
numerical solution of (2.24). (a) Input density profile; (b) input velocity profile; (c) eigenvector for
mode with phase speed c = −0.61; (d) c = 0.0013 (density mode); (e) c = −0.27; (f) c = 0.28;
(g) c = −0.51 (vorticity mode); (h) c = 0.51 (vorticity mode).

shear or viscosity, one would find two mode-1 waves travelling in opposite directions,
and the eigenfunction would have a maximum value on the density interface. The
addition of viscosity does not significantly alter the velocity or shape of these two
waves. However, by incrementally increasing the magnitude of the velocity field, it
can be demonstrated that shear distorts these modes so that the mode travelling to
the left (figure 7g) is skewed upwards, and conversely the mode travelling to the
right (figure 7h) is skewed vertically downwards. For the purposes of this paper we
will call these two modes the vorticity modes. The peak of each of the two vorticity
modes is coincident with one edge of the interfacial region (the region of maximum
curvature in the velocity profile), rather than with the region of maximum density
gradient. Mathematically, this result is due to the relative importance of the ūzz
terms (representing the largest vorticity gradients) in (2.24), and demonstrates that
the inclusion of shear is crucial in determining the effect of internal modes as carriers
of information about the density structure.

There is also a single mode which propagates on the density interface (figure 7d)
and we therefore refer to this mode as the density mode. The density mode is only
present when viscosity is finite, and while it is a persistent feature at all points of the
channel, it appears to be unaffected by the shear. Instead, the speed of propagation
of this mode is best approximated by the velocity of fluid at the mid-isopycnal (see
the centre contour in figure 3).

It is possible to track the density mode, as well as the two vorticity modes along the
whole channel. On the assumption that these three are the most important mode-1
waves from the point of view of communication of information about stratification,
we show the variation of phase speed and modal structure with x in figure 8 (qr ≈ 1).
Here the dots show the phase speed, while the curved lines show the hydraulic
prediction of wave speeds for the case qr ≈ 1. At every second gridpoint a panel
shows the modal structure of each of the three modes. For the vorticity modes (upper
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and lower rows of panels) we plot two lines showing the two curvature extrema,
and for the density mode (central row of panels) one horizontal line is shown at the
maximum of N2.

Before trying to relate the modes in figure 8 to hydraulic control, it is instructive to
use this information to explain the behaviour observed in the numerical simulation
of linear waves (§ 3.1). Figure 8 shows very different phase speed information than
was obtained in the direct simulation of waves. For example, direct simulation
demonstrated that waves generally do not travel to the right from the left-hand side
of the channel. Yet the eigenvalue solutions show that modes exist which propagate
rightwards at these points. Upon examination of the top row of panels in figure 8
one sees that the rightward travelling vorticity mode undergoes a change on the
left-hand side of the domain. As we travel from the centre to the left, a second peak
in the eigenvector materialises at x ≈ −0.08, and at x ≈ −0.12 the second peak
dominates the eigenvector profile. The transition from a vorticity mode to a mode
which is trapped in the upper layer is complete at x ≈ −0.20. This transition is crucial
to understanding the results of the direct simulation of linear waves. In the direct
simulation, modes are excited by a perturbation centred on the maximum density
gradient. At x ≈ −0.24 (for example), that disturbance at the density interface projects
predominantly onto the density mode (which is travelling to the left), and partly onto
the leftward propagating vorticity mode. The disturbance will not project significantly
onto the rightward travelling vorticity mode. Therefore, while this mode exists, it is
not being excited in the linear perturbation experiments. The same argument can be
applied to the leftward travelling vorticity mode on the right-hand side of the domain.
The wave speeds measured in the perturbation experiments are in general bounded by
the density mode and the leftward propagating vorticity mode on the left-hand side
of the contraction, and bounded by the density mode and the rightward propagating
vorticity mode on the right-hand side of the contraction.

We now consider the implications of the modal structure for hydraulic control.
The data of interest in figure 8 pertain to the physical communication of information
in the channel which would usually be carried by the baroclinic mode-1 wave. This
information is likely to be carried by the density mode, since the maximum of the
eigenfunction of this mode is coincident with the interface. The phase speed of the
density mode varies along the length of the channel, and is positive on the right-
hand side, negative on the left-hand side, and intersects with c = 0 at the centre of
the contraction. Therefore, this mode is carrying information away from the centre
of the contraction. For the density mode, we can specify the critical point to be close
to the minimum of the contraction.

The two vorticity modes are also capable of carrying interfacial information, how-
ever as the wave propagates there is a progressive transformation in the eigenfunction.
A transition occurs at x ≈ −0.1 for the right travelling mode, and x ≈ 0.1 for the left
travelling mode. The end result is that these modes are capable of carrying interfacial
information away from the contraction, but are not effective carriers of interfacial
information from the reservoirs towards the contraction. Unlike the density mode
which has a definable critical point, their inability to carry information the length
of the channel relies upon the gradual evolution of eigenvector shape. However, the
vorticity modes do illustrate that interfacial variations in either reservoir will not be
able to propagate into the channel.

A feature of hydraulic control is that the position of the virtual control depends
upon the barotropic flow rate. This was seen to hold for the direct excitation of waves
as shown in figure 6, and we can test if it applies to the eigenvalue analysis using the
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case with qr ≈ 4.2. Figure 9 shows the density mode, and two vorticity modes for the
case with a finite barotropic flow rate, where the field of view has been shifted to the
left. Note that the two solid vertical lines show the hydraulic prediction of the virtual
and topographic control points from hydraulic theory. The density mode behaves
similarly to the zero barotropic flow case, and the phase speed intersects with zero
at x ≈ −0.25. This is consistent with the observation that waves cannot travel to the
right for x . −0.28 in the direct simulation of waves (see figure 6). It is notable that
hydraulic theory predicts the position of the virtual control at x ≈ −0.16 in this case.
This may imply that the zero crossing of the density mode may represent an analogy
to the hydraulic virtual control point, however the analogy is not complete, because
the density mode only appears when viscosity is finite, and thus cannot be part of
the two-layer inviscid hydraulic solution.

The behaviour of the vorticity modes presents a different picture in this case. A
transition occurs at x ≈ 0.2 (not shown) for the leftward vorticity mode, and at
x ≈ 0 for the rightward vorticity mode. As was the case with no barotropic flow
rate, this indicates that reservoir-to-reservoir communication will not be possible via
the vorticity modes. One might claim that the rightward vorticity mode transition at
x ≈ 0 represents a topographic control. However the case for the leftward vorticity
mode transition as a virtual control region is weak, as it is on the opposite side of
the contraction to the predicted hydraulic virtual control.

4. Discussion and conclusions
Two different methods of evaluating the behaviour of linear internal waves in

exchange flows have been demonstrated. The first method relates to the direct simu-
lation of linear perturbations by solving (2.10)–(2.12) using an adaptation of the
numerical model S-FIT. The second method uses the solution of the sixth-order
stability equation to find both the phase speed and modal structure of waves. The
direct simulation method considers all available modes which are excited by an initial
disturbance, whereas the second method produces a large number of modes which are
subjectively assessed, to determine which are the important modes. The techniques
reveal different but complementary information about the propagation of low-mode
internal waves through exchange flows. Both show that, as in two-layer flows, control
may be thought of in terms of information propagation. More precisely, it is the
propagation of information regarding the vertical location of the maximum density
gradient that is important.

The eigenvalue method is perhaps the more useful of the two approaches as it gives
the modal structure at any point, and requires only profiles of velocity and density, and
estimates of the turbulent eddy viscosity and wavenumber. A single mode, centred on
the maximum density gradient, appears to conform to the behaviour of the interfacial
mode in two-layer theory. It is the intersection of the phase speed with zero which
indicates the position of a control in the flow. The control point shifts upstream
relative to the barotropic flow as barotropic flow rate increases, indicating that this
control point may be analogous to the virtual control point identified in hydraulic
theory.

There are two other important modes, which have a maximum near the interface,
but are skewed from the interface so that the maximum in the eigenvector coincides
with the maximum vorticity gradients. While neither of these modes has zero phase
speed, the vorticity modes can nonetheless be used to infer details about control. In this
case, the mode undergoes a transition so that upstream of the transition (relative to the
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direction of travel of the wave) the eigenfunction peak is not in the interfacial region.
This implies that the mode is an ineffective carrier of interfacial information upstream
of the transition point. Conversely, downstream of the transition, the vorticity mode
takes a form which indicates it could be an effective carrier of interfacial information.
In one sense this can be considered to result in control of the flow of information,
however this is a different concept from hydraulic control, as the transition occurs
gradually and thus instead of a critical point at which wave speeds are zero we find
a critical region over which control gradually takes effect. In any case, this results in
the same conclusion: that the system is in a state where end conditions can change
without altering the flow.

There are implications in these findings for the extension of hydraulic control to
cases with continuous stratification and mixing. Two primary features of hydraulic
control outlined in §1 are first that local information (at a control point) can be
extrapolated to give global information, and secondly that the hydraulic solution gives
an upper bound on flux through the channel. Extrapolation of global information
from local variables is difficult in cases where mixing is significant, since energy is
continually being lost to mixing. However, the above analysis demonstrates that in
stratified exchange flows, reservoir conditions can be altered without affecting the
flow. Thus it is possible that a solution may exist which can be used to place an upper
bound on the flux for a given rate of mixing.

Another application of this work is in the analysis of geophysical field data to
determine whether flows are supercritical. This may have relevance to both uni-
directional flows (for example, abyssal flow over mid-ocean ridges) and bi-directional
flows (such as the Bosphorus). In the case of uni-directional flow, control points
indicate that downstream conditions may vary without altering the flux. In such cases
it may be possible to calculate flux with only limited knowledge of the downstream
conditions. Alternatively, if it can be determined that bi-directional exchange flow is
controlled, then the implication is that changes to one reservoir may not affect the
other reservoir. For example, profiles of velocity and density at discrete locations taken
from field measurements such as Gregg & Özsoy (2001) may be used to calculate the
eigenvalue solution to the viscous stability equation. By selecting the lowest modes
from the solution, it may be possible to determine whether the flow is controlled,
and if so, which parts of the channel are super- and subcritical. This can be used to
predict flux variations due to changes in external conditions.
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